1963 Aluminum 377 Small-Block Chevy Engine

Before the 1969 427 ZL1, there was the All-Aluminum 377 Small-block Chevy!

Dateline: 5-7-21, This story by K. Scott Teeters was first published in the October 2019 issue of VETTE magazine – In the early 1960s, an aluminum performance engine was as exotic as fuel injection, independent suspension, and four-wheel disc brakes. The first mention of an all-aluminum engine for a Corvette was in Zora Arkus-Duntov’s proposal outline for the Q-Corvette in 1957. Ed Cole was Chevrolet chief engineer from 1952 to 1956 and was the lead engineer in the design and development of the small-block Chevy.

The Wintersteen L88 Grand Sport #002 resides at the Simeone Museum in Philadelphia, PA. Part of the collection includes the hand-made #002 Roadster replica body and one of the all-aluminum 377 SBC engines that Dr. Simeone purchased from Jim Jeager. The replica body is mounted to a chassis buck with an interior.

Cole was a mechanical engineering visionary. After he became Chevrolet’s general manager in 1956, Cole announced his 1960 Q-Chevrolet concept that would put a transaxle into every car to improve traction and handling and eliminate the transmission hump that would open up the interior. Cole’s plan included the Corvette.

Even before going to work for Chevrolet, all Duntov wanted to do was to build racecars. Based on his racing knowledge, Duntov’s Q-Corvette was spectacular and included; a four-speed transaxle, four-wheel independent suspension, four-wheel disc brakes, and an all-aluminum fuel injected 283 engine. Duntov is usually credited with the all-aluminum small-block Chevy, a deeper look tells a slightly different beginning.

The design parameters of Cole’s SBC were that the engine should be; small, lightweight, simple, and inexpensive. Cole reasoned that an aluminum version of the SBC using a new aluminum-silicone alloy would be obviously lighter and probably less expensive to make. To keep costs down, there would be no valve seat inserts, no pressed-in valve guide inserts, or cylinder liners. But sometimes a simple idea turns out to not be so simple.

Problems started right from the beginning. The complex molds used sand cores and the completed castings required extensive machining. Sand-cast aluminum is high in porosity and low in density. During machining, cavities would open up in the castings, causing a high rejection rate, which drove up the cost.

Another indication that this is likely to be one of the Nassau Invasion 377s is the chrome stamped steel valve covers. Photos in the “Corvette Grand Sport” book by Paddock and Friedman from the race show the same valve covers.

Aluminum pistons on aluminum bores were hard to lubricate and would scuff the bores. Between the strength of materials and the casting challenges, pouring aluminum into molds designed for cast iron wasn’t going to work for mass production.

Weber carbs were THE hot setup in the 1960s before fuel injection became more efficient. The 377 used four massive 58mm side-draft carburetors. The “EW” on the float chamber cover stands for Edoardo Weber, the founder, and inventor of the Weber carburetor.

A few aluminum engines were completed. Duntov installed one in his CERV-I car in 1959, but the valves would freeze to the guides when the temperature went low. Mickey Thompson got an aluminum engine for an Indy car project and bored the cylinders to installed steel sleeves to reduce the C.I.D. to the Indy limit of 255-C.I.D.

Note the non-stock location of the alternator. This was to slightly lower the car’s center of gravity.

Roger Penske had TRACO modestly build an aluminum SBC to just 300-horsepower for his Cooper Monaco. When TRACO was done, the engine weighed just 350-pounds; the lightest of all the aluminum SBCs.

Forensic evidence gleaned from the book, “Corvette Grand Sport” by Paddock and Friedman indicates that based on the shape of the collector on the headers, this was most likely one of the engines used during the Nassau assault in 1963.

The original SBC was never designed to be cast in aluminum. So when exact copies were cast in aluminum, the basic weaknesses of the original design were obvious. In 1960 some Corvette brochures offered 275 and 315-horsepower fuel injection engines with aluminum heads but were canceled early in production due to breakage. Briggs Cunningham was to be given several sets of aluminum heads for his Corvette Le Mans assault, but none were installed.

When Duntov started planning his Lightweight Sting Rays in early 1962 to battle Shelby’s Cobras, the SBC had 327-cubic-inches. Duntov insisted on an all-aluminum 327, reasoning that the heavy-duty parts from the L84 Fuelie would be more than enough for his racing engine. Unlike the previous aluminum engines, steel cylinder liners were pressed into the block. After each block was machined, it was water-tested for leaks. If leaks couldn’t be fixed with welding they were scrapped.

The most significant change to the basic block was that the main bearing webs were thicker and four-bolt main bearing caps were used. The earlier aluminum SBCs were not delivering any significant power increases, so it was decided that more cubic inches were needed. A 4.00-inch stroke yielded 402-cubic-inches. However, experimentation showed that the engine was happier with a 3.75-inch stroke that yielded 377-cubic-inches. Notches had to be made into the insides of the block for connecting rod clearance.

Numerous cylinder head designs were considered. The wildest was a hemi head design with two spark plugs per cylinder. The hemispherical combustion chamber allowed for larger 2.20-inch intake and 1.72 exhaust valves. The intake system was a Rochester constant-flow fuel-injection unit. This was Duntov’s preferred engine for his Lightweight but never was developed or tested. Engineers expected 600-horsepower from the 402-cubic-inch configuration.

The Mark II big-block with its unique “porcupine” semi-hemi heads was in development, so engineers designed and cast similar sets of aluminum heads for the SBC. Initial tests showed that they did not flow as well as the standard wedge combustion chamber heads, so the concept was dropped. If the heads had been developed they could have been a game-changer and made it into production cars.

Twelve aluminum 377 blocks were successfully machined and designated “A” to “L”. When John Mecum took delivery of three Grand Sport Corvettes as part of his Nassau invasion, the cars had aluminum 377s with four 58-mm Webers. After the Grand Sports stomped the Cobras at Nassau, the cars were bought and sold at a brisk pace.

Engineers learned that the aluminum 377s were good for short races, such as Nassau, but not durable for long races, such as Sebring. When Penske raced Grand Sport #005 at Sebring in 1964, his car was powered by a steel version of the 377 and performed very well.

Several of the engines were sent to Jim Hall and installed into his Chaparrals. Hall was instructed to install the engines and not to change anything except for timing and settings for the Webers. The engines were plugged in, raced, and returned to Chevrolet for evaluation.

The inscription of the transmission is unusual and indicates that it was likely to have been a specially built unit. “W.O.26310” could have meant “Work Order”. “TRANS #7-B” could have meant the second rebuild of transmission #7. Also note that the bolts on the case side plate are aircraft safety wired. A special team at Chevrolet built all of the 377 engines, the safety wiring was likely a deterrent to tampering.

As the engines were raced, eventually nearly everything either failed or upon examination was soon to fail. For instance, when one engine threw a rod, engineers used a new process for making rods called, Vacuum-Induction Melt steel to insure no impurities in the raw forging. When bolts were magnafluxed and showed signs of stress, all bolts were then over-designed. Rocker-arm lube was another issue and there were electrical problems with the early-transistorized regulators and ignition amplifiers.

Note the serial number on the back of the block casting, “0240983” and the casting date, “8-20-63”. This “could” have been one of the engines used in the 1963 Nassau assault in early December 1963 that stomped on the Cobras.

Exhaust headers were showing signs of cracking at the ports due to metallurgical problems. This was fixed by using a different welding process. Camshaft gears were failing when dry-sump oil systems were installed. Excessive stress and wear on the camshaft drive gear caused the distributor to retard the timing; causing a drop-off in power.

Privateers raced all of the Grand Sports and many changes were made to the cars. One of the previous owners of the Simeone 377 built this expanded capacity oil pan. Original versions of the engines used as many stock performance parts as possible

The perceived advantage of the all-aluminum SBC was weight; the complete engine weighed 150-pounds less than a cast iron version, however, the aluminum engines didn’t make quite as much power. Because durability was such a serious issue, in the early years, development work went into durability.

Eventually, the aluminum SBC reached optimum development, priced itself out of racing, and didn’t contribute any parts that went into production engines. Close to the end, there was talk of an overhead-cam kit for the SBC, but no action was taken. The amount of money spent on the program was an accounting nightmare for sure. At best, all the problem-solving saved years of development time for the all-aluminum Can-Am block and the ZL1. In a sense, the all-aluminum SBC was a prehistoric ZL1, domed by the basic “bread and butter” design of the original SBC. – Scott


Reproductions of this post’s lead illustration of the All-Aluminum 377 Small-Block Chevy and the Grand Sport #005 are available as 11″ x 17″ prints, signed and numbered by the artist, CLICK HERE!


And for fans of the 1963 Grand Sport Corvette, we have LOTS of Grand Sport Corvette prints CLICK HERE!


 


The History of Mid-Engine Corvettes, 1960 to C8: Part 3

The 1964 Corvette GS-II – Frank Winchell’s Mid-Engine Engineering (Racing) Study with Jim “Mr. Chaparral” Hall

Dateline: 3.6.18 – Images GM Archives – This article was originally published in the November 2016 issue of Vette Vues Magazine

While Duntov lead the charge when it came to racing Corvettes, he wasn’t the only power player inside Chevrolet with a vision for a mid-engine Corvette. Frank Winchell was a low-profile company man who, unlike Duntov, did not like or seek out fame and attention. He was comfortable in his role as a corporate man. Winchell ran the Chevrolet R&D group from 1959 through 1966 and was a “take no prisoners,” “lets try it” kind of guy. While not a degreed engineer, he had a natural sense of how things worked and specialized in the design and development of automatic transmissions.

In Chapter 35 of Karl Ludvigsen’s 2014 edition of “CORVETTE – America’s Star Spangled Sports Car”, in Chapter 35, titled, “Winchell’s Raiders”, Karl shares that one of Winchell’s nicknames was, “General Bullmoose” after Al Capp’s Li’l Abner character, General Brashington T. Bullmoose, the cold-blooded capitalist tyrant tycoon. (This was obviously NOT a compliment) Chevrolet engineer and author of the book, “Chevrolet = Racing…? Fourteen Years of Raucous Silence!!, Paul Valkenburgh, said, “Winchell hated the phrase, ‘That can’t be done.’ Upon hearing that, there would be an inner explosion like a mine blast. He might grab an engineer by the lapels to bellow, ‘What that means is that you can’t do it. So, by God, I’ll find someone who can!’ And he usually did.”

It has been said that Duntov managed with love and enthusiasm, where as nobody worked “with” Frank Winchell – they worked “for” him. Frank was a tough “take no prisoners” kind of guy. So, it is no surprise that the two strong willed men had different ideas of what the Corvette should be. Duntov and Winchell respected each other, but they often locked horns. Continue reading


The History of Mid-Engine Corvettes, 1960 to C8: Part 3″

The XP-819 REAR ENGINE Corvette Will Get Its Day

Dateline: 12.7.11

“Pearl Harbor Day”

The Frank Winchell rear-engine Corvette gets the Corvette Repair treatment.

The XP-819 was once a genuime basket case. Literally. The purpose of the car was to prove a point. There was a bit of a pissing contest going on in ‘64 between Zora Arkus-Duntov and co-engineer Frank Winchell. Winchell was part of the Corvair team and had a different religion as to the path to handling glory. Winchell said, “Hang it out the back! It works for Porsche and VW.” Duntov said, “No, the engine needs to be in the middle to keep the car balanced.”

When the topic of mid-engine Corvettes come up, the name “Zora Arkus-Duntov” is almost unanimously, and immediately connecter to the subject. But there was “another guy” that championed mid AND rear-engine Corvettes. That would be, Frank Winchell. I’ve covered the XP-819 and Winchell’s Corvettes in my Illustrated Corvette Series VETTE Magazine column. Most of the Corvette blogs are talking about the newly restored XP-819 by by Kevin Mackay and his team at Corvette Repair. I thought it would be interesting and different to share with you the Frank Winchell / XP-819 story.

What I like about this car is that it kind’a-sort’a is cool. It was a very interesting design idea, and the back story between Duntov and Winchell is interesting as well. When researching my stories, I learned that the two engineers with strong personalities, had totally different management styles. Many of Duntov’s coworkers are on record saying that because of his passion of high performance cars and his almost boundless enthusiasm, he was wonderful to work WITH. You worked hard, but Zora made things exciting. (Duntov was such a misfit in General Motors!)

What I learned about Winchell was very insightful. So as to not seem “harsh or bias,” let me first say that Duntov was on record saying the Winchell was a fine engineer and very smart. It should also be mentioned that Winchell was the Chevrolet go-to guy in the early years of Jim Hall’s amazing Chaparral race cars – the pre- Chaparral 2J ”sucker-car” days. Continue reading “The XP-819 REAR ENGINE Corvette Will Get Its Day”