Grady Davis’ Successful 1963 Z06 Corvette Becomes a Million Dollar Collectible
Dateline: 7-20-22 Graphics and illustrations by K. Scott Teeters, this story first appeared in the February 2010 issue of Vette magazine.
Intro: Details keep rolling out as orders pour in for the new C8 Z06 Corvette. The official pricing just came out and the car starts at $106,395 and it doesn’t take much to get past $125,000. Back in 2009, the then-new C6 ZR1 had a starting price of $103,300! I guess it’s the accounting magic of amortization. Let’s continue our look back at the origin and development of the Z06 Corvette.Continue reading “Z06 Corvette Review, Pt. 5 – The Grady Davis 1963 Z06 Race Car”→
Before the 1969 427 ZL1, there was the All-Aluminum 377 Small-block Chevy!
Dateline: 5-7-21, This story by K. Scott Teeters was first published in the October 2019 issue of VETTE magazine – In the early 1960s, an aluminum performance engine was as exotic as fuel injection, independent suspension, and four-wheel disc brakes. The first mention of an all-aluminum engine for a Corvette was in Zora Arkus-Duntov’s proposal outline for the Q-Corvette in 1957. Ed Cole was Chevrolet chief engineer from 1952 to 1956 and was the lead engineer in the design and development of the small-block Chevy.
Cole was a mechanical engineering visionary. After he became Chevrolet’s general manager in 1956, Cole announced his 1960 Q-Chevrolet concept that would put a transaxle into every car to improve traction and handling and eliminate the transmission hump that would open up the interior. Cole’s plan included the Corvette.
Even before going to work for Chevrolet, all Duntov wanted to do was to build racecars. Based on his racing knowledge, Duntov’s Q-Corvette was spectacular and included; a four-speed transaxle, four-wheel independent suspension, four-wheel disc brakes, and an all-aluminum fuel injected 283 engine. Duntov is usually credited with the all-aluminum small-block Chevy, a deeper look tells a slightly different beginning.
The design parameters of Cole’s SBC were that the engine should be; small, lightweight, simple, and inexpensive. Cole reasoned that an aluminum version of the SBC using a new aluminum-silicone alloy would be obviously lighter and probably less expensive to make. To keep costs down, there would be no valve seat inserts, no pressed-in valve guide inserts, or cylinder liners. But sometimes a simple idea turns out to not be so simple.
Problems started right from the beginning. The complex molds used sand cores and the completed castings required extensive machining. Sand-cast aluminum is high in porosity and low in density. During machining, cavities would open up in the castings, causing a high rejection rate, which drove up the cost.
Aluminum pistons on aluminum bores were hard to lubricate and would scuff the bores. Between the strength of materials and the casting challenges, pouring aluminum into molds designed for cast iron wasn’t going to work for mass production.
A few aluminum engines were completed. Duntov installed one in his CERV-I car in 1959, but the valves would freeze to the guides when the temperature went low. Mickey Thompson got an aluminum engine for an Indy car project and bored the cylinders to installed steel sleeves to reduce the C.I.D. to the Indy limit of 255-C.I.D.
Roger Penske had TRACO modestly build an aluminum SBC to just 300-horsepower for his Cooper Monaco. When TRACO was done, the engine weighed just 350-pounds; the lightest of all the aluminum SBCs.
The original SBC was never designed to be cast in aluminum. So when exact copies were cast in aluminum, the basic weaknesses of the original design were obvious. In 1960 some Corvette brochures offered 275 and 315-horsepower fuel injection engines with aluminum heads but were canceled early in production due to breakage. Briggs Cunningham was to be given several sets of aluminum heads for his Corvette Le Mans assault, but none were installed.
When Duntov started planning his Lightweight Sting Rays in early 1962 to battle Shelby’s Cobras, the SBC had 327-cubic-inches. Duntov insisted on an all-aluminum 327, reasoning that the heavy-duty parts from the L84 Fuelie would be more than enough for his racing engine. Unlike the previous aluminum engines, steel cylinder liners were pressed into the block. After each block was machined, it was water-tested for leaks. If leaks couldn’t be fixed with welding they were scrapped.
The most significant change to the basic block was that the main bearing webs were thicker and four-bolt main bearing caps were used. The earlier aluminum SBCs were not delivering any significant power increases, so it was decided that more cubic inches were needed. A 4.00-inch stroke yielded 402-cubic-inches. However, experimentation showed that the engine was happier with a 3.75-inch stroke that yielded 377-cubic-inches. Notches had to be made into the insides of the block for connecting rod clearance.
Numerous cylinder head designs were considered. The wildest was a hemi head design with two spark plugs per cylinder. The hemispherical combustion chamber allowed for larger 2.20-inch intake and 1.72 exhaust valves. The intake system was a Rochester constant-flow fuel-injection unit. This was Duntov’s preferred engine for his Lightweight but never was developed or tested. Engineers expected 600-horsepower from the 402-cubic-inch configuration.
The Mark II big-block with its unique “porcupine” semi-hemi heads was in development, so engineers designed and cast similar sets of aluminum heads for the SBC. Initial tests showed that they did not flow as well as the standard wedge combustion chamber heads, so the concept was dropped. If the heads had been developed they could have been a game-changer and made it into production cars.
Twelve aluminum 377 blocks were successfully machined and designated “A” to “L”. WhenJohn Mecum took delivery of three Grand Sport Corvettes as part of his Nassau invasion, the cars had aluminum 377s with four 58-mm Webers. After the Grand Sports stomped the Cobras at Nassau, the cars were bought and sold at a brisk pace.
Engineers learned that the aluminum 377s were good for short races, such as Nassau, but not durable for long races, such as Sebring. When Penske raced Grand Sport #005 at Sebring in 1964, his car was powered by a steel version of the 377 and performed very well.
Several of the engines were sent to Jim Hall and installed into his Chaparrals. Hall was instructed to install the engines and not to change anything except for timing and settings for the Webers. The engines were plugged in, raced, and returned to Chevrolet for evaluation.
As the engines were raced, eventually nearly everything either failed or upon examination was soon to fail. For instance, when one engine threw a rod, engineers used a new process for making rods called, Vacuum-Induction Melt steel to insure no impurities in the raw forging. When bolts were magnafluxed and showed signs of stress, all bolts were then over-designed. Rocker-arm lube was another issue and there were electrical problems with the early-transistorized regulators and ignition amplifiers.
Exhaust headers were showing signs of cracking at the ports due to metallurgical problems. This was fixed by using a different welding process. Camshaft gears were failing when dry-sump oil systems were installed. Excessive stress and wear on the camshaft drive gear caused the distributor to retard the timing; causing a drop-off in power.
The perceived advantage of the all-aluminum SBC was weight; the complete engine weighed 150-pounds less than a cast iron version, however, the aluminum engines didn’t make quite as much power. Because durability was such a serious issue, in the early years, development work went into durability.
Eventually, the aluminum SBC reached optimum development, priced itself out of racing, and didn’t contribute any parts that went into production engines. Close to the end, there was talk of an overhead-cam kit for the SBC, but no action was taken. The amount of money spent on the program was an accounting nightmare for sure. At best, all the problem-solving saved years of development time for the all-aluminum Can-Am block and the ZL1. In a sense, the all-aluminum SBC was a prehistoric ZL1, domed by the basic “bread and butter” design of the original SBC. – Scott
Reproductions of this post’s lead illustration of the All-Aluminum 377 Small-Block Chevy and the Grand Sport #005 are available as 11″ x 17″ prints, signed and numbered by the artist, CLICK HERE!
And for fans of the 1963 Grand Sport Corvette, we have LOTS of Grand Sport Corvette prints CLICK HERE!
The Spring 1990 issue of “Corvette Quarterly” was a banner issue for 1963 Corvette Grand Sport fans. Late in 1989 arrangements were made for a very special meeting at Sebring International Raceway, in Sebring, Florida. Two Corvette race cars, separated by twenty-five years gathered for some comparison testing between the Grand Sport #002, known as the “Wintersteen 427 L88” Grand Sport #002 Roadster and the 1989-90 Morrison Engineering and Development Trans-Am Corvette.
On hand to witness and advise was then-retired, former Corvette Chief of Engineering, Zora Arkus-Duntov. In the 1970s GM’s corporate retirement age of 65 mandate was in place, and Duntov was put out to pasture, way too soon in December 1974 when he turned 65. GM president Ed Cole and Sr. VP of Styling, Bill Mitchell faced similar fates at GM. You can read the amazing track comparison of the Grand Sport and the Trans-Am Corvette in Pt. 4 of The Duntov Files.
This story, “Zora Looks Back” offers some interesting insights into Duntov’s tenure at GM, as well as the “Lightweight Grand Sport Corvette” experience. For instance, Duntov said, “It was a quick and dirty sledgehammer project that we put together in a couple of months. There were so many compromises and constraints that we made something of which I am not particularly proud.” Interesting. Well, we sure love them!
Duntov was there, this was his baby, and he would know the real skinny on the Grand Sport. For Grand Sport race car fans, this article by Bill Oursler is a real treat! – Scott
PS – You can access the entire collection of Corvette E-Booklets and the Duntov Files HERE.
Watch “The Master of Oversteer” Enjoying a Day’s Work!
It’s been a pleasure to get to know the family of Corvette racer Dave MacDonald. The April 2012 issue of VETTE Magazine has part 1 of my story about the career of MacDonald and the May 2012 has part 2, the conclusion. While pictures and words are great, video just adds some dimension. So, I thought some vintage MacDonald videos were in order.
MacDonald’s racing career path was similar to John Greenwood’s, in that like Greenwood, MacDonald started out in drag racing. But like many guys that like to drive Corvettes in, shall we say, a “spirited” way, it didn’t take MacDonald long to get used to not only thundering down the straight-aways, but sliding the back end around the corners. MacDonald was known as “the master of the oversteer” and his tail-out driving style was very popular with the spectators.
One of the Unsung Heros of Corvettes & High Performance Chevrolets
Within the machinations of a big corporation, to get things done, it’s good to have an angel. Zora Arkus-Duntov had several angels. We’ve talked about Duntov’s relationship with Chevrolet honcho Ed Cole. But one angel that doesn’t get much attention was Semon “Bunkie” Knudsen.
Semon’s father was former GM president, William S. Knudsen. While this was helpful for the younger Kneudsen’s career, things weren’t handed to Bunkie – he had to work for what he accomplished. Like many teenage boys of his generation, Semon was interested in mechanical things. When he asked for a car, his Dad gave him one… in pieces for the young man to out back together. During his college years, Summer break meant a stint working at GM… on the assembly line. Upon graduation, Knudsen got a job at Pontiac in 1939 and quickly rose up through the management ranks. By 1956 he was the general manager at Pontiac.
The main job of every general manager is to increase sales. Like Chevrolet, Pontiac had a stogy public image. Bunkie assembled a team to jazz up the line and brought in Pete Estes from Oldsmobile, and John Z. DeLorean from Packard to create high performance version of his best -selling Pontiacs. Thus began the era of the “Wide Track Pontiac.” (Remember the ‘60s jingle, “Break away, to a wide track’n, Pon-tee-ack…”?) Within a few years, Pontiacs were a force to be contended with in NASCAR racing. Bunkie’s makeover of Pontiac put the division in third place in the industry and his reward was a promotion to head of the Chevrolet Division in 1961. Continue reading “Corvette Timeline Tails: Happy 99th Birthday Semon “Bunkie” Knudsen”→